

mappiamo

English documentation

	Introduction

	Installation
	Using content manager

	Create new content as admin or editor

	About semantic web

	Create automatic meta data by form

	Insert contents to category

	Create pages

	Create custom menus
	Widgets on your template

	Address

	Bottom menu

	Allmeta box

	Box

	Collabrators box

	Cookie box

	Distance box

	Events box

	Instagram box

	Onemeta box

	Youtube box

	Allmeta

	Slideshow

	Divided menu

	Dropdown menu

	Intro

	Headline

	Flickr

	Form contact

	Gravatar

	Jplayer

	Leaflet panel widget

	Map

	Menu

	Video box

	Lastcontent

	Full featured menu

	Owl image

	Owl video

	Share

	Slider

	Weather

	Disqus
	The API module

	Get all places

	Get all routes

	Get all polygons

	Get all markers by 1 km distance from route

	Get all markers within polygon

	Search by field content

	Get category contents by category ID

	Get one content by content ID

	Get marker data by distance from coordinates

	Get marker data by distance from coordinates filter by category ID
	Importers

	SHP2GeoJson Importer
	New Updates

	M_Module better templates generation

	Admin Panel Widget_List error

	Mappiamo custom content type managment

	Call a model from controller

	Call a view from controller

Documentazione italiana

	Mappiamo

	Introduction
	The first italian subtitle

	The second italian subtitle

#mappiamo - EN

This is the #mappiamo Ensglish documentation.

Introduction

#mappiamo [http://www.mappiamo.org/] is a CMS that allows you to create and leverage content through the use of OpenData, the geo-location and microformats. It can be used for processing the data produced by public administrations, collecting content (crowdsourcing), civic hacking and providing a basis for the portal of a smart city.

Installation

Download #mappiamo package from GIT, and copy all files to your web host by FTP. Copy files to subdirectory if required, or to public_html root. Login to your control panel or phpMyadmin to create database user with password and add database to user. Give all access rights to your database user. When you copied all files to your host, access to the #mappiamo root by your browser by http. Setup process will be started. Fill all required fields. If the process done without error, you can access to the content manager on the URL: http://[your_host]/manager/

If something changed later (for example database password) edit settings.php from the root of installed #mappiamo.

	Row 7: Fill or modify your sitename

	Row 8: Fill or modify your domain

The database access storef from row 14 to 19:

	Row 14: Database name

	Row 15: Database type

	Row 16: Database hostname

	Row 17: Database prefix

	Row 18: Database username

	Row 19: Database password

If you need e-mail service, setup your SMTP provider:

	Row 21: Your e-mail

	Row 22: Username for SMTP service

	Row 23: Password for SMTP service

	Row 24: Hostname for SMTP service

Using content manager

Create new content as admin or editor

You can create several type of content.

	Post: this is a simple text based blog content (with marker on the map if required)

	Place: content for the place selected on the map

	Event: event is like the place, but you can define start and end dates on extra fields

	Route: this content contains longer route on the map for long distance travels between cities

All content types can create marker on the map and can be used draw-on-the-map functions, excluding route. Route can contains only route plan.

About semantic web

The Semantic Web is an extension of the Web through standards by the World Wide Web Consortium (W3C). The standards promote common data formats and exchange protocols on the Web, most fundamentally the Resource Description Framework (RDF).

According to the W3C, “The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries”. The term was coined by Tim Berners-Lee for a web of data that can be processed by machines. While its critics have questioned its feasibility, proponents argue that applications in industry, biology and human sciences research have already proven the validity of the original concept. (wikipedia)

Note

Mappiamo automatically support semantic web for better result on google searches by content and meta data. The standard semantic data generated automatically by the content module.

Create automatic meta data by form

Semantic data generated by meta data and content. The content editor or administrator can insert metadata when modify saved content step-by-step, but metadata generator form is available on the frame “Use meta data wizzard” on “Meta” tab. Editor can select form theme, and the selected form can be filled and savaed. These forms are folows the standard rules of semantic web data.

Note

Always read the rules before fill the metadata generator form. For example, if the content meta assigned to organization, the instrictions can be found here: https://schema.org/Organization. Currently we offer four pre-generated form for automatic metadata creation.

Insert contents to category

Create category, and group several types of content to selected category. The selected category will group contents and markers on the map if required. The groped contents can be listed on one page, and the content markers will be displayed at one time on the map.

Create pages

Create content type “pages” if you want to display the collection of content by menu. Pages can contains category (with any contents), one content, module generated service or page, and events with date filter on the top of page.

Note

If you choose “Add event” when adding page content, you will found a new dialog with several parameters, not only the content selection list. Here you can insert more than one events groupped by categories, and you can setup the sort order and filter functions for this page by input fields. Only this one type of page, the users can re-define event filter if enebled on the top.

Create custom menus

Create menu with name on the content manager. When menu named and created, use it on “Page”. Select manager’s menu “Page”, click on previously created page-content (with document, category, modul or events) and insert selected page content to any menu. Select more than one times and add if required.

Note

Very important, that the created menu must be inserted to the template of content type by name or menu ID.

Widgets on your template

You can insert several widgets to your own #mappiamo template. You have to edit tamplete files only with your favorite IDE / text editor. Widgets are the part of ducument front-end with several functions. Some of them can be inserted to the content, some of then can be inserted to the sidebar on left or right.

Note

If the widger name contains word “Box”, the widget primary created for the sidebar, not the column of main content. but because the template can be modified with several tricks, these widget can be used under or within the main content text.

Note

New widgets required new CSS classes for correct display. Check the HTML source code to get widget’s class names.

Address

	Usage code example:

<?php M_Template::widget('address'); ?>

This widget have no parameters, creating search box for map, the widget centering map for the search address.
The search string must be real name (for example city name) to get real latitude and longitude.

Note

This widget is the part of Leaflet panel widget, this widger required to show address search function.

Bottom menu

	Usage code example:

<?php M_Template::widget('bottommenu', array($ID)); ?>

Display bottom menu items. This widget have 1 parameter, the menu ID.

Note

Menu must be created by manager, you can insert any menu of them by ID.

Allmeta box

	Usage code example:

<?php $this->widget('box_allmeta'); ?>

This widget have no parameters, creating list (table) of all meta data of content.
This widget is ideal for right column, but van be used unser the main content. The disabled meta names is on the row 13 on the code.

Box

	Usage code example:

<?php M_Template::widget('box', array($image, $title, $desc, $link)); ?>

This widget display image box, using four parameters.

	$image -> image path

	$title -> title text on image (positioned by customizable CSS!)

	$desc -> description of image (positioned by customizable CSS!)

	$link -> link if user click on the image

Collabrators box

	Usage code example:

<?php $this->widget('box_collabrators' array(n)); ?>

This widget have one parameters “n”, what is the maximum number of collabotators article based on the selected content. The collaborator’s e-mail must be saved to the meta value with name “collaborator”.

Note

This widget have no parameter about collaborators name ir e-mail, because these names depending on the document. This is the reason why the collaborator’s identifier definied by meta data of selected document not by the template.

Cookie box

	Usage code example:

<?PHP $this->widget('box_cookie'); ?>

This widget have no parameters, creating alert box for cookie usage.

Distance box

	Usage code example:

<?PHP $this->widget('box_distance'); ?>

This widget have no parameters, creating list (table) of related articles not far from the current content.

Note

The distance is fixed on code, the radius is 1 km.

Events box

	Usage code example:

<?PHP $this->widget('box_events'); ?>

This widget have no parameters, creating list (table) of events not far from the current content.

Note

The distance is fixed on code, the radius is 1 km.

Instagram box

	Usage code example:

<?PHP $this->widget('box_instagram', NULL); ?>

This widget have one parameter what is the hashtag for images.
If this parameter missing or NULL, the default hashtag is ‘tourism’.
With meta name ‘hashtag-instagram’ can be overwite the deafult hashtag to anything else.

Note

If you use meta to define instagram hashtag instead of template, you can get images several hashtags on all documents where ‘hashtag-instagram’ have value.

Onemeta box

	Usage code example:

<?PHP $this->widget('box_onemeta', '[meta_name]'); ?>

This widget have one parameter what is the meta name to get the value of only oane meta data.

Note

This widget can be used on the column of main content.

Youtube box

	Usage code example:

<?php $this->widget('box_youtube', array('[developer key]', '[channel id]', [maximum content])); ?>

This widget have 3 parameters. Developer key, youtube channel id, and the maximum number of youtube content.

Note

This widget can be inserted to the left or right sidebar column, and creating scrollable carousel of selected channel content.

Allmeta

	Usage code example:

<?PHP $this->widget('content_allmeta'); ?>

This widget have no parameters, creating list (table) of meta data from the current content.

Note

This widget created for list or table of standard schemantic data if available.

Slideshow

	Usage code example:

<?PHP $this->widget('content_slideshow'); ?>

This widget have no parameters, creating slideshow on the content column from all images included to the current content.

Note

If more than one images inserted to the content, the widget will be show the gallery where you insert. The best place is under the content column.

Divided menu

	Usage code example:

<?php M_Template::widget('dividedmenu', array($ID)); ?>

Display divided menu. This widget have 1 parameter, the menu ID.

Dropdown menu

	Usage code example:

<?php M_Template::widget('dropdownmenu', array($ID)); ?>

Display dropdown menu. This widget have 1 parameter, the menu ID.

Intro

	Usage code example:

<?PHP $this->widget('intro'); ?>

This widget have no parameters, display intro image.

Headline

	Usage code example:

<?PHP $this->widget('content_headline'); ?>

This widget have no parameters, creating group of some data and metadata which are rewired on content column between title and content text.

Flickr

	Usage code example:

<?PHP $this->widget('flickr'); ?>

This widget have no parameters, creating flickr image groups on the map by visible box of map.

Form contact

	Usage code example:

<?PHP $this->widget('form_contact', array('[registered username]')); ?>

This widget have one parameter, the parameter must be the username of registered Mappiamo user. This widget creating form with input fields for sending simple message with ajax validation.

Gravatar

This widget included to the content module, cannot use on the template or MVC view.
The widget fetching gravatar icon by the content creator’s e-mail address, if the editor registered on this service.

Jplayer

	Usage code example:

<?PHP $this->widget('jplayer'); ?>

This widget have no parameters, creating javascript player for audio (or video) content.
The required meta name is ‘audio’ and the meta value must be the full url of audio or video file.

Note

The meta data value is the full URL of audio file, but the correct encoding is very important. Plase refer to the officiel JPlayer page to inform about usable audio formats.

Leaflet panel widget

	Usage code example:

$Panel_names = array([panel_name_1], [panel_name_2],, [[panel_name_n]]);
 $Panel_icons = array([icon_name_1], [icon_name_1],, [icon_name_n]);
 $this->widget('leaflet_panel', array($Panel_names, $Panel_icons));

This widget have two required parameteres, booth have to be arrays. The array of Panel_names listed the names of
buttons on will be isplayed on the map. On the template directory must be created .php files with same name.
For example, if the panel_name_1 is “SearchBox”, SearchBox.php must be created to the template directory. This file can
contains any required code, for example widgets.

	Usage code example of SearchBox.php:

<div id="SearchBox" class="PanelOnTheMAP">
 <?php M_Template::widget('address'); ?>
</div>

	
	Rules:

	
	The panel code must be included between <div>.

	The div ID must be same as the panel name.

	The class “PanelOnTheMAP” required.

	Between <div> can be inserted any widget or code.

	The panel icon array contains the name of bootstrap icon. For exammple if the bootstrap icon name is

glyphicon-search, the panel icon name is only “search”.

Map

	Usage code example:

<?PHP $this->widget('map' array($zoom)); ?>

This widget have 1 parameter, the default zoom. This widget display map anywhere on the content page. This widget display map (with markers, draw or route) on the visitor’s interface.

Menu

	Usage code example:

<?PHP $this->widget('menu' array($ID)); ?>

This widget have 1 parameter, the menu id. This widget display menu item.

Video box

	Usage code example:

<?PHP $this->widget('videobox'); ?>

This widget have no parameters, creating embedd iframe player for youtube content by full url. The required meta name is ‘videobox’ and the meta value must be the full url of youtube video.

Lastcontent

	Usage code examples:

<?php $this->widget('lastcontent', array(5)); ?>
<?php $this->widget('lastcontent', array(5, 'event', 'start', 'from_now')); ?>
<?php $this->widget('lastcontent', array(5, 'post', 'created')); ?>

This widget have parameters. The first is the maximum number of content, this is required.

All other paramteres are optional (not required because default values are available): [content type], [ordering column name], and if the content type is ‘event’, the last parameter ‘from_now’ shows only current and future events.
If the last parameter is “now” for event type, the list will be displayed event only if the event currently running.

Full featured menu

	Usage code example:

<?php M_Template::widget('menu_full', array('[category name]', '[treemenu|popmenu]', '09', 'check')); ?>

This widget have parameters. Creating custom menu system by Mappiamo “pages” and “menus”, and display selected categories on the map.

	Parameters:

	The category name

	Menu type: ‘treemenu’ or ‘popmenu’

	Template number of menu only. Menus have 15 templates, the menu template number can be 1 to 15.

	How menu display the selected catorgory contents:

	‘link’ - the category opens new page with content list

	‘check’ - the category displays as marker on the map

Owl image

	Usage code example:

<?PHP $this->widget('owl_image', array('category', 4, 60)); ?>
<?PHP $this->widget('owl_image', array('path', 6, 'templates/soccorso/images/partners', 'index.php?module=category&object=59')); ?>

This widget have parameters, creating image carousel to the main content column.
The source images can get from two different source: ‘category’ or ‘path’. This is the first parameter.

If the image source is ‘path’, the 3rd parameter must be the relative path to the directory contains images.

If the image source is ‘category’, the 3rd parameter must be the id number of category where the widget reads all images from content. This category must be created and filled with grouop of contents.

The 2nd parameter is the maximum number of items to show.

The 4th parameter is the link to open when user click on image. This is optional. If the source is ‘category’, the link will open the document contains clicked image.

Owl video

	Usage code example:

$TubeID = array('jkovdYV0qm0', 'dw6wZQkfsn0', 'CqdSzVXkhmY', 'km3JiaPqWMI', 'NyCwOdyhZco', 'YJTxnhjpF3U', 'HOVYTZkvjH8', '2Tlou1Vdg6Y', '0_rtwI_nUlI', 'LCtp7D0uCjA');
$this->widget('owl_video', array($TubeID, 3));

This widget have parameters, creating video carousel to the main content column.
The first parameter must be an array on the separated variable, contains all youtube video id required for the carousel.

The second parameter is how many videos display at once by the scrollable carousel.

Share

	Usage code example:

<?PHP $this->widget('share', array($site_id)); ?>

Share content on social networks.

Slider

	Usage code example:

<?PHP $this->widget('slider', array($content_id)); ?>

This widget creating image slider from the content by content ID.

Weather

	Usage code example:

<?PHP $this->widget('weather'); ?>

This widget have no parameters, creating weather report on the map.

Disqus

	Usage code example:

$Types = array('post', 'event');
<?php M_Template::widget('disqus', array($Types)); ?>

This widget have parameter as array named $Types. Creating comment section on content page. Disqus account and disqus site name required. On the parameter ‘$Types’ must be listed all content types (post, event, place, route) where the disqus comment service will be available. Insert this widget under the main content page.

Note

You must register your installed #mappiamo on the Disqus service page as site administrator to get your unique Disqus site name. If you have this name, you must define it on the manager -> preferences.

The API module

By API module, you can get data for external application for example mobile app or another #mappiamo

Note

If ‘auth’ parameter required to get data by API module, the auth key must be storen in the preferences table with name ‘api_auth’.

Note

The ‘lang’ parameter is always optional. Without this parameter API uses internal auto language.

Get all places

http://[site_uri]/index.php?module=api&task=allpois&auth=[auth_key]&lang=[language]

Get all routes

http://[site_uri]/index.php?module=api&task=allroutes&auth=[auth_key]&type=route&lang=[language]

Get all polygons

http://[site_uri]/index.php?module=api&task=allroutes&auth=[auth_key]&type=polygon&lang=[language]

Get all markers by 1 km distance from route

http://[site_uri]/index.php?module=api&task=poisonroute&route=[route_name]&auth=[auth_key]&lang=[language]

Note

The value of ‘route’ parameter must be same as the value of ‘name’ column on content table.

Get all markers within polygon

http://[site_uri]/index.php?module=api&task=poisonroute&route=[polygon_name]&auth=[auth_key]&lang=[language]

Note

The value of route parameter must be same as the value of column name on content table.

Search by field content

http://[site_URI]/index.php?module=api&task=search&auth=[auth_key]&field=[col_name]&data=[col_value]

Get category contents by category ID

http://[site_URI]/index.php?module=api&task=category&object=[category_id]

Get one content by content ID

http://[site_URI]/index.php?module=api&task=content&object=[content_id]

Get marker data by distance from coordinates

http://[site_URI]/index.php?module=api&task=search&lat=[latitude]&lng=[longitude]&radius=[distance_by_km]

Get marker data by distance from coordinates filter by category ID

http://[site_URI]/index.php?module=api&task=search&lat=[latitude]&lng=[longitude]&radius=[distance_by_km]

Importers

SHP2GeoJson Importer

The data importers created to save exteral data set to mappiamo at one step. The GeoJson importer can be used
for import data created from .SHP source files by QGIS desktop software.

For the import process you need .geojson file exported from QGIS, and you have to create .INI file.

.ini file must be contains rules how to save .geojson data to mappiamo. The importer can use two labels:
[{database_table_name}] and [fixed_data].

Under the optional label [fixed_data] must be listed the database table, clumn, and the value.
For example, if you need to insert value “place” to all imported rows on table “contents” and column “type”, the
corrent row under this label: contents[type]=”place”.

The [{database_table_name}] is required label. For example, if to the table “contents” column “address” have to be inserted something,
you have to enter these rows to .ini:

[contents]
address[]="Residenza"

The rules of this .ini label:

[{database_table_name}]
{table_column}[]="{geojson_prperty_name}"

You can use more than one labels for table name, and if you want to store more than one geojson property
to the column, you can duplicate the row with several values of geojson prperty names.

Example of tested .ini file:

[contents]
address[]="Residenza"
title[]="Tipologia"
title[]="Residenza"

[fixed_data]
contents[type]="place"

New Updates

M_Module better templates generation

The class M_Module generate the html page and implements the pattern MVC. Now you can use the same view file all time you want.
You can use view files as section of a more complex template.

Admin Panel Widget_List error

If Admin Panel “Widget_list” crash the problem is in the naming of the widget or in the naming of the main widget functions.
The main function name should be like: mwidget_<widgetName>(){}.

Admin Panel could crash also if the name of other functions of your widget are a duplicate of other widgets function name.
So keep attention to the naming of your functions.

Mappiamo custom content type managment

In Mappiamo you can have only 4 content type by default: post, place, route, event.
If you want insert custom type you have to follow these steps:
1. Create the display function for new type in modules/content/models/content.php
2. Add the new type Manager in modules/content/view/default.php
3. Insert new type in Types array in bin/mbin.object.php
4. Create a new class with this name: class.<newtype>.php in bin/classes (name are case sensitivie)
5. Register the new class in binaries.php

example of class.<newtype>.php:

<?php
class M_Newtype extends M_Post {
protected $type = ‘newtype’;
protected $kind;
protected $start = NULL;
protected $end = NULL;
public function __construct($id = NULL) {if ($id) {$this->read($id);} }
public function get_start() {return $this->start;}
public function get_end() {return $this->end; }
public function set_start($value) {$this->start = strval($value);}
public function set_end($value) {$this->end = strval($value);}
}
?>

Call a model from controller

use this function inside a controller:

$this-> model("name_model", $parameters)

$parameters should be an array. When you pass the array $parameters, Mappiamo split it in a list of parameters for the “name_model” function.
For example if i have $parameters[a,b,c] when i pass throught $this-> model(“name_model”, $parameters) the function “name_model” will be like this:

function name_model (a, b, c){
//some stuff
}

The order of data in $parameters array corresponds to the order of function parameters.

Call a view from controller

use this function inside a controller:

$this-> view("name_view", $data)

$data should be an array otherwise data are not passed. It’s important that you use the variable name as “$data” otherwise it doesn’t work.

Mappiamo

This is the Mappiamo documentation.

Introduction

Italian translation required

The first italian subtitle

Italian translation required

The second italian subtitle

Index

Admin interface

Create Widget

The widget creations have following conditions:

	Widgets code should be placed in the directory name ‘widgets’, where the name of sub-folder is same as the widget’s name (widgets/[widget name])

	place a [widget name].php file within the widget’s path

	The widget must contain a .md file, through which the Mapi framework recognized (eg. widgets/[widget name]/[widget name].md). This file should contain a title, version number, and a brief description of the widget:

#Menu
##0.0.6
 Display menu items

If they are all available, the Mapi framework will recognize the widget that will appear in the admin panel. Here you can turn on and off, and install / uninstall if required.

Create popup popup window for the markers on the map

The contents of the popup window code are added by javascript. The #mappiamo cms makes the maps with OpenStreetMap and the javascript library Leaflet (http://leafletjs.com) which is available at the path assets\js\leaflet\.

Steps of widget creation

In [widget name].php you have to include the function mwidget_[widget name](). This is the first function, what read and run by the Mapi framework. This is the reason, why the function name bounded. The widget start with mwidget_ and the widget name with mwidget_[name]. The other classes or functions names are no matter.
Because this function will be read first by the widget, these rows will be executed first.
Eg:

function mwidget_mappiwidget() {
 echo ‘<h1>My cool widget</h1>';
 if (‘view1’ == $view) {
 incude(‘includes/view1.php’);
 } elseif (‘view2’ == $view) {
 include(‘includes/view2.php’);
 } else {
 include(‘includes/default.php’);
 }
}

The HTML initialization code is not required by the widget (<head>, <body> …) because this code is read from the template.
To display the widget user interface, it must be registered in the template:
Eg.: templates/template_name/home.php -> row 19:
(<?php $this->widget('mapiwidget', array()); ?>)
The result: http://mappiamo.org/template_name/index.php
echoes: “Hello a MapiWidget “
The template necessary to register the widget with the required parameters as follows:
<?php $this->widget('mapiwidget', array(2, 3)); ?>
The widget, which reads above two parameters, like this:

function mwidget_mapiwidget($a, $b) {
 echo $a; // -> 2
 echo $b; // -> 3
}

The method in the template for widget registration:
<?php $this->widget('mapiwidget', array(2, 3)); ?>

$this->widget() : global function call the widget
mappiwidget : the name of widget
array(2, 3) : send parameters from template to the widget’s function

Reading content from database

The framework read the content with this method:
http://www.mappiamo.org//index.php?module=[module name]&object=[content id]
so:
http://www.mappiamo.org//index.php?module=content&object=252
where the value of module called content is on the path /modules/content/, reads row from the database where the id value is 252. The database table called ‘Content’ contains 21 columns, the content stored on column called ‘text’.
The default content display by a module called ‘home’, which refer to a database table called ‘content’ ’s default row. The default module (called home) is selected from the database table called ‘modules’. It should be set to 1 the line containing the name of the module (‘name’ column) ‘default_module’ column.
So:
http://mappiamo.org/index.php?module=home
is equivalent to:
http://mappiamo.org/
because the default setting in the table ‘module’ is the row where the module name is ‘home’.

SEO link by .htaccess URL rewrite method

If .htaccess rewite used on the server root, the link to access content can be possible with SEO friendly URL. The URL syntax is:
http://www.mappiamo.org/[controller name]/[content ID]/[parameters]
For example:
If the original URL is: http://www.mappiamo.org/index.php?module=content&object=931
The rewritten SEO friendly url is: http://www.mappiamo.org/content/931
where content is the module (controller) name, 931 is the ID of the content in the database table contents (column name id).
Same method can be user to read category:
http://www.mappiamo.org/category/1
where the number 1 after category is the category ID in the database table category.
The rewritten and the regular URL can be used both to access content. If SEO friendly URL required within full site, this method have to be used on the MVC View (HTML) code.

Creating cutom modules

The custom modules displays a kind content that allow different displays as the default. These include for example different information, contact us. If you want to do this, you will need to create custom modules.
The path for these custom modules is the subdirectories of modules directory. For example the path for the custom content is modules/custom_content.
Modules may be a bit more complicated than the widget, but greater benefits than the widget.

The developed module has to be made in the MVC system. Subdirectories under the MVC system should be set up accordingly:
modules/content/models
modules/content/view

The Controller of the MVC modules in the root directory of the module, the module has the same name as the controller:
modules/content/content.php
The models are in the folder ‘models’, the folder ‘view’ contains the MVC view, which defines the module display.
The MVC controller, which has the same name as the root directory of the module, the MVC controller file calls the view and the model functions as follows:
$This-> model("name_model", $parameters) call model from the controller
$This-> view("name_view", $data) call view from the controller

The functional modules available later via URL links. For example, if the name of the module ‘accessibility’, the following links to be called:
http://www.mappiamo.org/?Module=accessbility¶meter=value

The module content can be accessed by friendly URL if required:
http://www.mappiamo.org/[module_name]/[parameter_value]
Eg: http://www.mappiamo.org/accessbility/parametervalue
The other possibility is that the module will decide what will appear on the site.

If required an administrative interface for the module, then it must be created as a special module of the admin interface:
Example: manager/modules/mcontent
The HTML input fields can be inserted to the Mappiamo content.
For example, a checkbox looks like this code in the view:
<input type="checkbox" name="mmap_category[]" value="4" />
Important data the name of input field ‘mmap_category[]‘ and in this case, ‘4’ is identified the category. The ‘[]’ required to the end of filed name if the input fields getting back arrays like checkboxes multiple selected lists.
In case you want to insert custom content on the map, you need a JS function, on the path assets/js/asset.map.js.
The online manual: http://leafletjs.com/
Example: (assets/js/asset.map.js) function:

this.add_marker = function ([latitude], [longitude], [category]) {
}

– displays the content of the marker within a popup window.
After that, you can add your own custom functions - if you need new content on the map markers - not only in the mapiamo category.
Because the assets starts earlier than the widgets, you get access to your own widget through this JS function: assets/js/asset.map.js
See, for example: widgets/folder/map.php

Meta-data inputs on content creation and modification process

The meta-data can be saved on the admin interface under the content menu. Meta data have two inputs fields, called ‘input’ and ‘name’. The data stored on the ‘content_meta’ table on the database. This table have 4 columns, the ‘input’ and ‘name’ for admin data, ‘id’ is the auto increased identification number, and ‘external_id’ what is the row ‘id’ on the content table for database join. One more column required in the future for the property name.
The SQL to display content titles and metadata at one table using table contents and content_meta:

SELECT contents.title, content_meta.name, content_meta.value FROM contents INNER JOIN content_meta ON contents.id = content_meta.external_id

The modification request about medatata inputs

The metadata ‘name’ field must be selected from a list in the future, and can be input new value what not in the list. The list must be contains (and offer) the previously stored meta names, and meta names from http://schema.org. In this site, look ‘type and property’ on the link http://schema.org/docs/gs.html#schemaorg_types. Here is the paragraph where the meta ‘names’ can be collected. For example, the meta names for products:
http://schema.org/Product

	aggregateRating

	audience

	brand

	color

	…..

	the content of Property column.

The another request, that the ‘name’ field list must be contains the previously stored custom meta names read from the database ‘content_meta’ table ‘name’ column.

The solution process

The meta input fields on the admin interface is the part of module ‘content’. This is the reason why the path for this module is ‘manager/modules/mcontent’.
The MVC view for the meta inputs is on the path manager/modules/mcontent/views/edit.php on row 252. For this view required ajax solution for getting required contents for name input.
The meta name data structure have main property. For example: ‘event’, ‘organization’, ‘highway’ etc. The meta name is the list of possible values of property. On the admin interface, new list required for the possible main properties, and the name field can offer the valid values of selected main property. For this process, the ‘content_meta’ table on the database have to be modified and new column have to be inserted to store main property names. When the property name selected, the ajax search list of ‘name’ filed will be filtered by this selection. The property and name selection based on the ‘content_meta’ database table content.
The another requirement for the ‘property’ and ‘name’ fields have to be offered the standard values of ‘property’ and ‘property values’ based on the required data structure, mut these data maybe not stored yet on the CMS database (because no content yet). This data structure depend on the site content. For searchable list creation for ‘property’ and ‘name’ lists, JSON, XML, or database content required filled with the relevant data structure and values.

HTML Input field validations

Input fields (especially text fields) have to be validated before the input data stored on the database. The validation rules have to be stored on the lib/mlib.validate.php as static function. This function contains regex as rule or any expressions as rule. This static function have to be registered on the bin/classes/abs.class.record.php on the ‘setup_object’ function.
Example:
The rule on the file: lib/mlib.validate.php

static function email($value) {
 if (! MValidate::string($value)) return false;
 if (! preg_match('/^([a-z0-9\+_\-]+)(\.[a-z0-9\+_\-]+)*@([a-z0-9\-]+\.)+[a-z]{2,6}$/ix', $value)) return false;
 return true;
}

This rule have to be registered on the file: bin/classes/abs.class.record.php

if (isset($this->email)) {
 if ($this->email && MValidate::email($this->email)) $record->email= $this->email;
 else return mapi_report_message('Not a valid e-mail.');
}

This method done server side validation before database insert.
Client side validation before this method would be much faster.
The example of client side validation for test is on the file assets/js/asset.form.js -> 324

The XML importer

The XML import module created for automated data insertions for new content, meta, and categories. This module can be found on the admin interface.
For XML import, two files required: XML for data, and INI for field names.
Some fields required for XML import: Title, Address, ZIP, City
These field names must be defined on the INI file. These rows minimally required for correct import:

category=[the category name]
description=[list of XML field names have to be inserted to the description separated by ‘,’]
Title=[XML field name of title]
Address=[XML field name of address]
ZIP=[XML field name of zip code]
City=[XML field name of city name]

The left side of equation cannot be changed, and this is case sensitive:
category, description, Title, Address, ZIP, City
The right side of equation is the XML filed name, case sensitive.
For example:
If the XML content is:

<Ragione_Sociale>VIVAI GARIGLIO SOCIETA' AGRICOLA SEMPLICE</Ragione_Sociale>
<Address>Borgata Tetti Rolle 4</Address>
<ZIP>10024</ZIP>
<City>Moncalieri</City>

The ini content must contain:

Title=Ragione_Sociale
Address=Address
ZIP=ZIP
City=City

For the titleonly, it’s possible to use XML like this: @attributes

<ufficio nomeufficio="Fiera del Parco di Stupinigi">

For this example xml content, the valid ini file must contain “Title” and XML @attributes name:

Title=nomeufficio

 nav.xhtml

 Table of Contents

 		mappiamo

 		Introduction

 		Installation

 		Using content manager

 		Create new content as admin or editor

 		About semantic web

 		Create automatic meta data by form

 		Insert contents to category

 		Create pages

 		Create custom menus

 		Widgets on your template

 		Address

 		Bottom menu

 		Allmeta box

 		Box

 		Collabrators box

 		Cookie box

 		Distance box

 		Events box

 		Instagram box

 		Onemeta box

 		Youtube box

 		Allmeta

 		Slideshow

 		Divided menu

 		Dropdown menu

 		Intro

 		Headline

 		Flickr

 		Form contact

 		Gravatar

 		Jplayer

 		Leaflet panel widget

 		Map

 		Menu

 		Video box

 		Lastcontent

 		Full featured menu

 		Owl image

 		Owl video

 		Share

 		Slider

 		Weather

 		Disqus

 		The API module

 		Get all places

 		Get all routes

 		Get all polygons

 		Get all markers by 1 km distance from route

 		Get all markers within polygon

 		Search by field content

 		Get category contents by category ID

 		Get one content by content ID

 		Get marker data by distance from coordinates

 		Get marker data by distance from coordinates filter by category ID

 		Importers

 		SHP2GeoJson Importer

 		New Updates

 		M_Module better templates generation

 		Admin Panel Widget_List error

 		Mappiamo custom content type managment

 		Call a model from controller

 		Call a view from controller

 		Mappiamo

 		Introduction

 		The first italian subtitle

 		The second italian subtitle

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

