

 Navigation

 	
 index

 	mappiamo stable documentation

Mappiamo

This is the Mappiamo documentation.

Introduction

#mappiamo [http://www.mappiamo.org/] is a CMS that allows you to create and leverage content through the use of OpenData, the geo-location and microformats. It can be used for processing the data produced by public administrations, collecting content (crowdsourcing), civic hacking and providing a basis for the portal of a smart city.

 Copyright 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	mappiamo stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.4.

 _static/minus.png

search.html

 Navigation

 		
 index

 		mappiamo stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/comment-close.png

mappiamo_manual_en.html

 Navigation

 		
 index

 		mappiamo stable documentation »

Admin interface

Create Widget

The widget creations have following conditions:

		Widgets code should be placed in the directory name ‘widgets’, where the name of sub-folder is same as the widget’s name (widgets/[widget name])

		place a [widget name].php file within the widget’s path

		The widget must contain a .md file, through which the Mapi framework recognized (eg. widgets/[widget name]/[widget name].md). This file should contain a title, version number, and a brief description of the widget:

#Menu
##0.0.6
 Display menu items

If they are all available, the Mapi framework will recognize the widget that will appear in the admin panel. Here you can turn on and off, and install / uninstall if required.

Create popup popup window for the markers on the map

The contents of the popup window code are added by javascript. The #mappiamo cms makes the maps with OpenStreetMap and the javascript library Leaflet (http://leafletjs.com) which is available at the path assets\js\leaflet\.

Steps of widget creation

In [widget name].php you have to include the function mwidget_[widget name](). This is the first function, what read and run by the Mapi framework. This is the reason, why the function name bounded. The widget start with mwidget_ and the widget name with mwidget_[name]. The other classes or functions names are no matter.
Because this function will be read first by the widget, these rows will be executed first.
Eg:

function mwidget_mappiwidget() {
 echo ‘<h1>My cool widget</h1>';
 if (‘view1’ == $view) {
 incude(‘includes/view1.php’);
 } elseif (‘view2’ == $view) {
 include(‘includes/view2.php’);
 } else {
 include(‘includes/default.php’);
 }
}

The HTML initialization code is not required by the widget (<head>, <body> …) because this code is read from the template.
To display the widget user interface, it must be registered in the template:
Eg.: templates/template_name/home.php -> row 19:
(<?php $this->widget('mapiwidget', array()); ?>)
The result: http://mappiamo.org/template_name/index.php
echoes: “Hello a MapiWidget “
The template necessary to register the widget with the required parameters as follows:
<?php $this->widget('mapiwidget', array(2, 3)); ?>
The widget, which reads above two parameters, like this:

function mwidget_mapiwidget($a, $b) {
 echo $a; // -> 2
 echo $b; // -> 3
}

The method in the template for widget registration:
<?php $this->widget('mapiwidget', array(2, 3)); ?>

$this->widget() : global function call the widget
mappiwidget : the name of widget
array(2, 3) : send parameters from template to the widget’s function

Reading content from database

The framework read the content with this method:
http://www.mappiamo.org//index.php?module=[module name]&object=[content id]
so:
http://www.mappiamo.org//index.php?module=content&object=252
where the value of module called content is on the path /modules/content/, reads row from the database where the id value is 252. The database table called ‘Content’ contains 21 columns, the content stored on column called ‘text’.
The default content display by a module called ‘home’, which refer to a database table called ‘content’ ’s default row. The default module (called home) is selected from the database table called ‘modules’. It should be set to 1 the line containing the name of the module (‘name’ column) ‘default_module’ column.
So:
http://mappiamo.org/index.php?module=home
is equivalent to:
http://mappiamo.org/
because the default setting in the table ‘module’ is the row where the module name is ‘home’.

SEO link by .htaccess URL rewrite method

If .htaccess rewite used on the server root, the link to access content can be possible with SEO friendly URL. The URL syntax is:
http://www.mappiamo.org/[controller name]/[content ID]/[parameters]
For example:
If the original URL is: http://www.mappiamo.org/index.php?module=content&object=931
The rewritten SEO friendly url is: http://www.mappiamo.org/content/931
where content is the module (controller) name, 931 is the ID of the content in the database table contents (column name id).
Same method can be user to read category:
http://www.mappiamo.org/category/1
where the number 1 after category is the category ID in the database table category.
The rewritten and the regular URL can be used both to access content. If SEO friendly URL required within full site, this method have to be used on the MVC View (HTML) code.

Creating cutom modules

The custom modules displays a kind content that allow different displays as the default. These include for example different information, contact us. If you want to do this, you will need to create custom modules.
The path for these custom modules is the subdirectories of modules directory. For example the path for the custom content is modules/custom_content.
Modules may be a bit more complicated than the widget, but greater benefits than the widget.

The developed module has to be made in the MVC system. Subdirectories under the MVC system should be set up accordingly:
modules/content/models
modules/content/view

The Controller of the MVC modules in the root directory of the module, the module has the same name as the controller:
modules/content/content.php
The models are in the folder ‘models’, the folder ‘view’ contains the MVC view, which defines the module display.
The MVC controller, which has the same name as the root directory of the module, the MVC controller file calls the view and the model functions as follows:
$This-> model("name_model", $parameters) call model from the controller
$This-> view("name_view", $data) call view from the controller

The functional modules available later via URL links. For example, if the name of the module ‘accessibility’, the following links to be called:
http://www.mappiamo.org/?Module=accessbility¶meter=value

The module content can be accessed by friendly URL if required:
http://www.mappiamo.org/[module_name]/[parameter_value]
Eg: http://www.mappiamo.org/accessbility/parametervalue
The other possibility is that the module will decide what will appear on the site.

If required an administrative interface for the module, then it must be created as a special module of the admin interface:
Example: manager/modules/mcontent
The HTML input fields can be inserted to the Mappiamo content.
For example, a checkbox looks like this code in the view:
<input type="checkbox" name="mmap_category[]" value="4" />
Important data the name of input field ‘mmap_category[]‘ and in this case, ‘4’ is identified the category. The ‘[]’ required to the end of filed name if the input fields getting back arrays like checkboxes multiple selected lists.
In case you want to insert custom content on the map, you need a JS function, on the path assets/js/asset.map.js.
The online manual: http://leafletjs.com/
Example: (assets/js/asset.map.js) function:

this.add_marker = function ([latitude], [longitude], [category]) {
}

– displays the content of the marker within a popup window.
After that, you can add your own custom functions - if you need new content on the map markers - not only in the mapiamo category.
Because the assets starts earlier than the widgets, you get access to your own widget through this JS function: assets/js/asset.map.js
See, for example: widgets/folder/map.php

Meta-data inputs on content creation and modification process

The meta-data can be saved on the admin interface under the content menu. Meta data have two inputs fields, called ‘input’ and ‘name’. The data stored on the ‘content_meta’ table on the database. This table have 4 columns, the ‘input’ and ‘name’ for admin data, ‘id’ is the auto increased identification number, and ‘external_id’ what is the row ‘id’ on the content table for database join. One more column required in the future for the property name.
The SQL to display content titles and metadata at one table using table contents and content_meta:

SELECT contents.title, content_meta.name, content_meta.value FROM contents INNER JOIN content_meta ON contents.id = content_meta.external_id

The modification request about medatata inputs

The metadata ‘name’ field must be selected from a list in the future, and can be input new value what not in the list. The list must be contains (and offer) the previously stored meta names, and meta names from http://schema.org. In this site, look ‘type and property’ on the link http://schema.org/docs/gs.html#schemaorg_types. Here is the paragraph where the meta ‘names’ can be collected. For example, the meta names for products:
http://schema.org/Product

		aggregateRating

		audience

		brand

		color

		…..

		the content of Property column.

The another request, that the ‘name’ field list must be contains the previously stored custom meta names read from the database ‘content_meta’ table ‘name’ column.

The solution process

The meta input fields on the admin interface is the part of module ‘content’. This is the reason why the path for this module is ‘manager/modules/mcontent’.
The MVC view for the meta inputs is on the path manager/modules/mcontent/views/edit.php on row 252. For this view required ajax solution for getting required contents for name input.
The meta name data structure have main property. For example: ‘event’, ‘organization’, ‘highway’ etc. The meta name is the list of possible values of property. On the admin interface, new list required for the possible main properties, and the name field can offer the valid values of selected main property. For this process, the ‘content_meta’ table on the database have to be modified and new column have to be inserted to store main property names. When the property name selected, the ajax search list of ‘name’ filed will be filtered by this selection. The property and name selection based on the ‘content_meta’ database table content.
The another requirement for the ‘property’ and ‘name’ fields have to be offered the standard values of ‘property’ and ‘property values’ based on the required data structure, mut these data maybe not stored yet on the CMS database (because no content yet). This data structure depend on the site content. For searchable list creation for ‘property’ and ‘name’ lists, JSON, XML, or database content required filled with the relevant data structure and values.

HTML Input field validations

Input fields (especially text fields) have to be validated before the input data stored on the database. The validation rules have to be stored on the lib/mlib.validate.php as static function. This function contains regex as rule or any expressions as rule. This static function have to be registered on the bin/classes/abs.class.record.php on the ‘setup_object’ function.
Example:
The rule on the file: lib/mlib.validate.php

static function email($value) {
 if (! MValidate::string($value)) return false;
 if (! preg_match('/^([a-z0-9\+_\-]+)(\.[a-z0-9\+_\-]+)*@([a-z0-9\-]+\.)+[a-z]{2,6}$/ix', $value)) return false;
 return true;
}

This rule have to be registered on the file: bin/classes/abs.class.record.php

if (isset($this->email)) {
 if ($this->email && MValidate::email($this->email)) $record->email= $this->email;
 else return mapi_report_message('Not a valid e-mail.');
}

This method done server side validation before database insert.
Client side validation before this method would be much faster.
The example of client side validation for test is on the file assets/js/asset.form.js -> 324

The XML importer

The XML import module created for automated data insertions for new content, meta, and categories. This module can be found on the admin interface.
For XML import, two files required: XML for data, and INI for field names.
Some fields required for XML import: Title, Address, ZIP, City
These field names must be defined on the INI file. These rows minimally required for correct import:

category=[the category name]
description=[list of XML field names have to be inserted to the description separated by ‘,’]
Title=[XML field name of title]
Address=[XML field name of address]
ZIP=[XML field name of zip code]
City=[XML field name of city name]

The left side of equation cannot be changed, and this is case sensitive:
category, description, Title, Address, ZIP, City
The right side of equation is the XML filed name, case sensitive.
For example:
If the XML content is:

<Ragione_Sociale>VIVAI GARIGLIO SOCIETA' AGRICOLA SEMPLICE</Ragione_Sociale>
<Address>Borgata Tetti Rolle 4</Address>
<ZIP>10024</ZIP>
<City>Moncalieri</City>

The ini content must contain:

Title=Ragione_Sociale
Address=Address
ZIP=ZIP
City=City

For the titleonly, it’s possible to use XML like this: @attributes

<ufficio nomeufficio="Fiera del Parco di Stupinigi">

For this example xml content, the valid ini file must contain “Title” and XML @attributes name:

Title=nomeufficio

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

developer/development.html

 Navigation

 		
 index

 		mappiamo stable documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

